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Abstract
Aluminum alloy is a widely utilized material in the modern automotive industry due to its lightweight properties and corrosion
resistance. Unconventionalmachining processes, particularly electrochemicalmachining (ECM) offer effectivemeans towork
with such materials. This study focuses on assessing the influence of four specific parameter combinations on the machining
of AA6082/ZrSiO4/SiC alloy. This work also analyzes the impact of critical ECMprocess parameters, including tool feed rate,
applied voltage, electrolytic concentration, and electrode type on the output response variables. These variables encompass
characteristics such as material removal rate (MRR) and surface roughness (SR), and their relationships are explored through
the application of the Taguchi design of experiments methodology. The analyzed experimental data were employed to train
an Artificial Neural Network (ANN) model aimed at achieving more accurate predictions to increase the MRR and reduce
SR. The ANN setup is a multilayer perceptron utilizing a feed forward architecture, denoted as (4–20–2). This notation
indicates that there are 4 nodes in the input layer, twenty neurons in the hidden layers, and 2 nodes in the output layer. The
ANN predictions yield an R2 value of 0.98003 and MSE within the range of 0.02413, specifically for the experiment dataset.
The results of the regression study strongly indicate that the ANN model can effectively and reliably predict both MRR and
SR with a high degree of precision. The scanning electron microscope (SEM) micrograph of the surface also indicates an
improved surface finish with brass tool as compared to graphite.
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1 Introduction

The superlative non-traditional production process in the
industrial sector is electrochemical machining (ECM). With
the support of an electrolyte solution, electrical current is
transmitted across the cathode end tool and anodeworkpiece.
It operates according to Faraday’s Law of Electrolysis [1].
Superalloy materials are being machined using an electro-
chemical method into the required design shapes [2].The
metal ions of the anode combine with the hydroxyl ions
released at the cathode during the electrolysis process to
form a metal hydroxide. As a result, the metal is precipitated
in an electrolytic cell and removed as sludge. This proce-
dure continues until the work item takes on the shape that
the tool has produced in it [3]. In the medical field, implant
materials such as titanium alloy and aluminium alloy spec-
imens should have the best possible surface quality [4, 5].
Hasan Demirtas et al. aimed to enhance the surface qual-
ity of-TiAl AM parts created using the EBM technique.
By adjusting the electrolyte type, pulse rate, and feed rate,
among other key variables, the specimens were machined
by ECM, and the impacts of these changes on the surface
characteristics were analyzed. The Ra values were discov-
ered to have fallen from 26.73 to 2.47 m in the scan direction
and from 35.39 to 3.25 m in the build direction. For both
directions, the surface irregularity is reduced by about 91%
[6]. Numerous computational intelligence techniques have
been used to solve optimization problems. To handle prob-
lems involving Multi-Objective Optimization, the PSO with
combined normalized objective is introduced. Selecting the
correct values for electrolytic machining process parameters
is crucial for optimizing the process performance parame-
ter [7]. T.A. Selvan et al. explored the surface finish and
material extraction features of Inconel 718 super-alloy. The
experiment was carried out utilizing a titanium tool and elec-
trochemical machining with various variables. The optimum
strategy was done based on Taguchi’s related grey relational
technique using Minitab 19 software [8]. In order to build
effective strategies for multi-material systems, Shatarupa
Biswas et al. developed the GA/PSO combined MOMLN
for multi-material optimization for finding the ideal parame-
ters formachining of IN625/718 and noted thatGAcombined
model’s accuracy is marginally greater than the PSO [9]. The
optimal parametric configuration is identified using GRA,
TOPSIS, and PSI to analyze the MRR, TWR, and SR for
machining Inconel 71. ANOVA is used to statistically ana-
lyze the experimental data, and the contribution level of each
parameter is given in order to provide the best results [10].
The influence ofWEDMprocess factors on the taperedwork-
piece manufactured of the AA5454 alloy was investigated.
This method is used to make slots in a tapered angle of 30°,
45°, and 60° on the workpiece along with variables peak

discharge current, and pulse-off time [11]. In order to deter-
mine optimal parameters for the desired variables, regression
models andGA are performed [12]. ANN are used in amulti-
variable optimization process to choose the most practical
pulse width, timing, wire winding velocity, and wire tension
for stainless steel to achieve the ideal SR. Huang and Liau
et al. [13] investigated the effects of feed rate, pulse timing,
wire tension, and flushing pressure on theMRRand SRof the
SKD-11. The MRR was found to be significantly impacted
by the table feed rate, whereas SR was mostly influenced
by pulse-on time. Rajurkar et al. [14] talked about increas-
ing accuracy by employing passive electrolytes to reduce
sludge. The waste generated from the machining surface
had a minimal machining allowance to increase the local-
ization impact and the effectiveness of the ECM process.
sodium nitrate has been used to enhance machining fea-
tures including machining precision. Kozak and Rajurkar
researched pulse electrochemical micromachining for micro
components on a cutting surface which are stress-, burr-, and
crack-free. Process variables which include applied voltage
and feed rate have been studied for their effects on perfor-
mance measures. The inter-electrode gap is minimized to
promote localized dissolution and raise accuracy in the ECM
process [15, 16].

The link between the efficiency of current and current
density was the main topic of Lin Tang et al.’s study [17].
An analysis was conducted on the impact of current den-
sity on grain boundary corrosion, machining velocity, and
surface roughness. The findings demonstrated that, at vari-
ous concentrations, the NaCl electrolyte’s current efficiency
was 100%. The 10 percent NaCl electrolyte can achieve
3.6 mm/min cathode feed speed, Ra 0.08 μm surface rough-
ness, and 411.4 mm3/min material removal rate at 24 V
voltage, 30 °C electrolyte, and 0.8 MPa electrolyte pressure.
subsequently examined forward flow to forward flow with
additional backpressure, they discovered that in the NaCl
electrolyte, the surface roughness value dropped dramati-
cally at 3.6mm/min. ShirishD.Dhobe et al. [18] presented an
experimental examination of the surface properties obtained
on titanium using electrochemical machining. Experiments
have effectively investigated the effects of applied voltage
between the tool and workpiece, as well as electrolyte flow
velocity during the ECM process, on the creation of various
surface characteristics. An attempt has been made to cre-
ate a surface and a self-generated oxide layer, which will
help titanium implants in biomedical applications withstand
corrosion and chemicals better. The oxide-layered machined
surface’s surface roughness was found to be between 3.09
and 3.66 μm, which is within the region where an implant
and bone can functionally bond.

This research is to assess the impact of a comprehensive
set of parameters in the ECM process when machining the
AA6082/ZrSiO4/SiC alloy. This investigation involves the
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Fig. 1 ECM setup

measurement of several output parameters, including mate-
rial removal rate and surface roughness, while systematically
altering input parameters such as tool feed rate, applied
voltage, electrolyte concentration, and electrode types. Fur-
thermore, microstructural analysis has been conducted to
elucidate grain variations around themachined region of each
specimen, and optimal parameters have been determined
through the utilization of Minitab statistical software An
Artificial Neural Network (ANN) is employed to construct a
prediction model using the LMAwith MATLAB-2016a ver-
sion. Thismodel is based on a FFBNnetwork and is designed
to analyzeMRRandSR.AA6082/ZrSiO4/SiCfinds common
use in the automotive sector, where it is employed in the pro-
duction of various components like body panels, wheels, and
chassis structures. The alloy’s advantageous blendof strength
and lightweight characteristics plays a crucial role in enhanc-
ing overall fuel efficiency.

2 Materials andmethods

According to Fig. 1, ECM setup contains of a power
source, a control unit for setting process parameters, a sys-
tem for supplying electrolyte, the tool and the work piece
[19]. Due to its significance in manufacturing industries,
AA6082/ZrSiO4/SiC alloy with a dimension of (60 mm*
60 mm *5 mm) was designated as a workpiece which is
secured using plastic clamps to prevent uneven calibration,
and acrylic tank is locked to prevent electrolyte leakage.
Using the screw mechanism, the cathode is manually posi-
tioned as close to the anode as feasible without coming into
touch. After adding enough electrolyte to the machining
chamber to completely submerge the area between the tool
and workpiece, the ECM process begin. The tool is sunk in
order to complete this operation. In the current study,machin-
ing tests were carried out using various ECM parameter
combinations using a Taguchi-based L9. The L9 orthogo-
nal array enables a methodical and effective exploration of
the experimental design space. It furnishes a well-balanced

Table 1 ECM parameters

Parameters Level 1 Level 2 Level 3

Tool feed rate 0.20 0.30 0.40

Applied voltage 25 35 45

Electrolyte
concentration

30 40 50

Electrode Type Copper (1) Brass (2) Graphite
(3)

and representative collection of experiments, aiding in the
identification of the most impactful factors influencing the
process while keeping the number of experimental runs rel-
atively small. the selected parameter’s levels and chemical
elements of AA6082 are shown in Tables 1 and 2 respec-
tively. AA 6082 possesses tensile strength of 260 MPa, yield
strength of 236MPa and elongation of 7–10%. The selection
of parameters in electrochemical machining (ECM) is cru-
cial for achieving the desired material removal rate, surface
finish, and dimensional accuracy. The criteria for parameter
selection in ECM include considerations related to the mate-
rial being machined, the desired outcome, and the specific
constraints of the machining process. Finding the optimal
set of parameters often involves a combination of theoretical
understanding, empirical testing, and continuous refinement
based on feedback from the machining process.

In each of the trail conditions and for every replication the
MRR and SR are measured. The machining for each trail is
carried out for 5 to 10 min. Taguchi suggests the use of the
S/N ratio which measure the excellence features conflicting
from the chosen values. The quality characteristics for MRR
is engaged as “higher is better” and for SR “lower is better”.
To identify the surface generation parameters that are sta-
tistically significant, an ANOVA is performed. The optimal
grouping of the surface generation-based process parame-
ters is forecasted with the S/N and ANOVA analysis. MRR
was measured by electronic balance during machining. The
measured weight is then converted into a volumetric mate-
rial removal rate as it is generally measured inmm3/min. The
volumetricMRR is found by applying the following formula:

MRR � (
Reduction in weight

)
/

(
density of the alloy

× machining time
)

Surface roughness is linked to the arithmetic average
deviance of a surface peak and valley which are expressed
in micro-meters (μm). The SR is measured by Mitutoyo
surftest, having a range of 0.01–200 μm.
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Table 2 Chemical
composition-AA6082 Mn Fe Mg Si Zn Cu Cr Ti Al

0.65 0.4 1.1 1.2 0.2 0.10 0.15 0.05 Bal

Fig. 2 ANN structure

3 Artificial neural network

An artificial neural network (ANN) is a mathematical model
that autonomously approximates the functioning of tradi-
tional neural systems. In this study, a multilayer perceptron
(MLP) was created, consisting of four input neurons rep-
resenting tool feed rate, applied voltage, electrolytic con-
centration, and electrode type. These inputs were connected
to hidden layers of neurons, while two output neurons rep-
resented the MRR and SR. In the pursuit of enhancing
prediction accuracy using experimental data, an iterative
approach was employed to ascertain the optimal number of
neurons in the hidden layer. It was deduced that, to construct
a proficientmodel tailored to the given dataset, aminimumof
twenty neurons in the hidden layer was imperative. Nonethe-
less, increasing the number of neurons posed a potential risk
of overfitting the model. The final model was constructed
using 90% of the experimental data for training purposes,
with the enduring data being separated between model vali-
dation and testing [20]. The process of solving fitting issues
involved training the neural network to establish relation-
ships between input variables and a set of numerical targets,
as depicted in Fig. 2.

4 Result and discussion

4.1 The influence of parameters onMRR

The contour plot serves as a visual representation that effec-
tively depicts the behavior of a two-dimensional function
within a specified domain of interest. This tool proves valu-
able for gaining insights into how a function responds to
variations in two input parameters, particularly concerning its
output response such asMRR. InFig. 3a–f, a series of contour
plots is presented, illustrating the relationship between input
parameters andMRR. Notably, Fig. 3a reveals that maintain-
ing a tool feed rate of 0.4 mm/min and an applied voltage of

25 V tends to increase MRR. Additionally, a slight further
increase in MRR is observed when the applied voltage is
raised to 35 V. Moving to Fig. 3b, it portrays a contour plot
depicting the interplay between tool feed rate and electrolyte
concentration. Here, we observe that the MRR tends to rise
when maintaining an electrolyte concentration of 40 g/liter
and a tool feed rate of 0.35 mm/min. This phenomenon
can be attributed to the fact that higher electrolyte con-
centrations enhance conductivity, consequently increasing
stray currents. This, in turn, diminishes localization effects,
ultimately leading to a reduction in MRR [21]. Figure 3c
illustrates a plot that depicts the connection between the tool
feed rate and the type of electrode used. Notably, it becomes
evident that maintaining a brass electrode tends to increase
the MRR. The machined surface quality is influenced by the
tool feed rate. An elevated feed rate can result in rougher
surfaces due to heightened tool engagement with the work-
piece. Conversely, lower feed rates may produce smoother
surfaces, although there is a trade-off as it could lead to a
reduction in Material Removal Rate (MRR). The type of
electrode contributes to determining the ultimate surface fin-
ish. The composition and state of the electrode can impact
the electrochemical reactions occurring at the tool-workpiece
interface, thereby influencing the quality of themachined sur-
face. Choosing the right electrode is crucial to attaining the
intended surface finish. As shown in Fig. 3d, when explor-
ing the influence of the parameters on MRR, applied voltage
emerges as the most dominant factor. This is particularly
evidentwhen considering the combination of electrolyte con-
centration. When higher voltage is applied, it results in a
decrease in stray current and side current, ultimately leading
to a reduction in MRR [22]. Figure 3e and f depict plots that
explore the relationship between applied voltage and elec-
trode type, as well as electrolyte concentration and electrode
type, respectively. These graphical representations provide
valuable insights. From these plots, it becomes evident that
when an electrolyte concentration of 40 g/l is maintained in
conjunction with a brass electrode, there is a notable increase
in the MRR for the aluminum alloy workpiece.

4.2 The influence of parameters on SR

In Fig. 4a–f, a set of contour plots is presented to illustrate
the correlation between input parameters andSurfaceRough-
ness (SR). Figure 4a indicates that keeping the tool feed rate
at 0.2 mm/min and applying a voltage of 35 V results in a
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Fig. 3 contour plots for MRR

reduction in SR. Moving on to Fig. 4b, it reveals the inter-
play between the tool feed rate & electrolyte concentration.
It is noticeable that maintaining an electrolyte concentra-
tion of 40 g/l and feed rate of 0.4 mm/min tends to increase
the SR. Figure 4c showcases a plot illustrating the connec-
tion between the tool feed rate and the type of electrode.
it becomes evident that using a copper electrode leads to
an elevation in SR. In Fig. 4d, it is observed the relation-
ship between voltage and electrolyte concentration. When a
higher voltage is applied, it increases in current, ultimately
leading to higher surface roughness. Figure 4e and f depict

plots exploring the connection between applied voltage and
electrode type, as well as electrolyte concentration and elec-
trode type, respectively, to surface roughness. These plots
highlight that maintaining a copper electrode alongside an
increase in voltage results in elevated surface roughness. The
experiment results reveal that the highest MRR value was
achieved in experiment number 7, while the lowest MRR
value was observed in experiment number 5. Experiment 7
utilized a parameter combination of TF at 0.4 mm/min, AV
at 25 V, EC at 50 g/l, and ET at 2. Conversely, experiment 5
employed a parameter combination of TF at 0.3mm/min, AV
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Fig. 4 contour plots for SR

at 35V, EC at 50 g/l, and ET at 1. These findings indicate that,
based on the MRR results, the use of a brass electrode, Tool
Feed rate increment and a reduction in the Applied Voltage
all contribute to the enhancement of MRR values. Figure 5a
and b display themeans and SN ratio plot pertaining toMRR.
These figures offer insight into the influence of various ECM
parameters on determining the optimal MRR value. Based

on the Table 3, it has been determined that the most favor-
able parameter combination for achieving optimal MRR is
TF3-AV1-EC2-ET2.Notably, the utilization of a brass elec-
trode during alloy machining, while keeping key parameters
constant (tool feed rate at − 0.4 mm/min, applied voltage
at 25 V, and electrolyte concentration at 40 g/liter), leads
to an increase in MRR. The thermophysical properties of
the electrode material play a pivotal role in determining its
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Fig. 5 Means and SN ratio plot for MRR

Table 3 MRR and SR results

S. no. Tool feed rate (TF)
(mm/min)

Applied voltage (AV) (V) Electrolyte
concentration (EC) (g/l)

Electrode type
(ET)

MRR
(mg/min)

SR
(μm)

1 0.2 25 30 1 0.0038 1.41

2 0.2 35 40 2 0.0059 1.31

3 0.2 45 50 3 0.0041 1.86

4 0.3 25 40 3 0.0046 2.1

5 0.3 35 50 1 0.0023 2.3

6 0.3 45 30 2 0.0044 1.96

7 0.4 25 50 2 0.0064 2.39

8 0.4 35 30 3 0.0052 3.19

9 0.4 45 40 1 0.0047 2.88

ability to efficiently process energy during machining and
facilitate material removal from the aluminum alloy work-
piece. It is crucial to ionize the gap between the electrode
and workpiece to enable the discharge of current and the
generation of robust sparks, which significantly affect MRR.
In the case of a brass electrode, a considerably higher tool
feed rate is required to release electrons into the gap com-
pared to both copper and graphite electrodes (Table 4). On the
other hand, the graphite electrode,with its carbon-based com-
position, necessitates lower temperatures to emit electrons,
and it doesn’t demand an extended time frame to establish
the necessary energy channel for enhancing MRR. Table 5
displays the ANOVA results for MRR, clearly demonstrat-
ing that the most significant factor in MRR is the type of
electrode (47.08%), followed by the tool feed rate and other
related parameters. This analysis underscores the significant
impact of machining variables on MRR, while it is worth
noting that the material strength used has a minimal effect
on MRR.

The experimental results highlight that the highest surface
roughness value was attained in experiment number 8, while

the lowest surface roughness was observed in experiment
number 2. Experiment 8 employed a parameter combination
of TF (Tool Feed) at 0.4 mm/min, AV (Applied Voltage)
at 35 V, EC (Electrolyte Concentration) at 30 g/l, and ET
(Electrode Type) at 3. Conversely, experiment 2 utilized a
parameter combination of TF at 0.2 mm/min, AV at 35 V,
EC at 40 g/l, and ET at 2. These findings suggest that, in
terms of SR results, employing a brass electrode, decreasing
the Tool Feed rate, and increasing the Applied Voltage all
contribute to reducing SR, resulting in an improved surface
finish for the alloy workpiece.

Figure 6a and b present themeans and signal-to-noise ratio
(SN ratio) plots related to surface roughness. These figures
provide insights into the impact of various Electrochemical
Machining (ECM) parameters on achieving the optimal SR
value. Based on the Table 6, it has been determined that the
most favorable parameter combination for achieving optimal
SR is TF1-AV1-EC2-ET2. Notably, when machining alloy
with a brass electrode, while keeping key parameters con-
stant (tool feed rate at 0.2 mm/min, applied voltage at 25 V,
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Table 4 SN ratio for MRR
Level Tool feed rate Applied voltage Electrolyte concentration Electrode type

1 46.91 46.34 47.07 49.24

2 48.88 47.68 45.96 45.20

3 45.37 47.14 48.13 46.72

Delta 3.51 1.33 2.17 4.05

Rank 2 4 3 1

Table 5 ANOVA for MRR
Source DF SS MS F P %

Tool feed rate 2 18.5619 9.2810 2.92 0.000 34.67

Applied voltage 2 2.7070 1.3535 0.389 0.004 5.06

Electrolyte concentration 2 7.0438 3.5219 0.958 0.003 13.19

Electrode type 2 25.0465 12.5233 3.62 0.000 47.08

Residual error 0 0 0

Total 8 53.3592

Fig. 6 Means and SN ratio plot for SR

and electrolyte concentration at 40 g/liter), there is a reduc-
tion in SR. It is essential to ionize the space between the
electrode and workpiece to facilitate current discharge and
the generation of robust sparks, both of which significantly
affect SR. Table 7 displays the ANOVA results for surface
roughness, clearly illustrating that the significant parameter
affecting SR is the tool feed rate (88.33%), followed by the
applied voltage and other related parameters. This analysis

emphasizes the substantial impact of machining variables on
SR. It is worth noting that the material strength used has a
minimal effect on SR.

4.3 SEM analysis

SEM may be used to analyze the shape and structure of
(ZrSiO4 and SiC) nanoparticles. The distribution and form of

Table 6 SN ratio for SR
Level Tool feed rate Applied voltage Electrolyte concentration Electrode type

1 − 3.573 − 6.678 − 8.285 − 7.996

2 − 7.702 − 7.341 − 7.519 − 7.458

3 − 12.272 − 9.528 − 7.743 − 8.093

Delta 8.699 2.851 0.765 0.635

Rank 1 2 3 4
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Table 7 ANOVA for SR
Source DF SS MS F P %

Tool feed rate 2 113.603 56.80 20.23 0.000 88.33

Applied voltage 2 13.348 6.67 2.56 0.0045 10.38

Electrolyte concentration 2 0.930 0.46 0.135 0.068 0.73

Electrode type 2 0.701 0.35 0.128 0.076 0.71

Residual error 0 0 0

Total 8 128.582

the two types of nanoparticle materials are shown in Fig. 7a
and b respectively. These figures demonstrate how certain
ZrSiO4 and SiC particles have combined. Both types of
nanoparticles included agglomerated and small rounded par-
ticles, as well as spherical and irregularly shaped particles.
Van-der-Waal forces between each of the particles may be
connected to the tendency for particle agglomeration [23].

The SEM micrographs are mentioned for MRR by using
brass and graphite electrode in Fig. 8a and b. The electro-
chemical reactions in ECM generate heat in the machining
zone. A higher tool feed rate helps in dissipating this heat
more effectively. It prevents localized overheating, which
can negatively affect the machining process by leading to
the formation of passive layers or other undesirable reac-
tions. Effective heat dissipation maintains stable machining
conditions and contributes to an increased MRR. Brass elec-
trode is an excellent electrical conductor, which is a crucial
property for ECM. During ECM, an electric current passes
between the workpiece and the electrode, causing electro-
chemical reactions. The high electrical conductivity of brass
ensures efficient current flow and, consequently, higherMRR
and the graphite electrode indicate particle deposition, glob-
ules, and white layer. The increase in layer with depositions,
pockmarks, and white layer thickness can be seen on the sur-
face machined with a graphite electrode due to an increase
in carbon element with graphite electrode and also crack-
ing of dielectric fluid and material deposition from electrode
material.

Surface roughness of Al alloy workpiece for both brass
andgraphite electrode is shown inFig. 9a andb.The improve-
ment in surface finish machined with the brass electrode as
evaluated against graphite electrode is also seen from SEM
micrograph Fig. 9a. The scientific reasons for using a brass
electrode to expand surface finish in ECM include its erosion
characteristics, control over material removal, dampening of
electromechanical effects, generation of fine wear debris for
polishing, compatibility with electrolytes, and reduced risk
of passivation. These properties collectively contribute to
achieving a high-quality surface finish in ECM applications.

4.4 Prediction of MRR and SR using ANN-LMmodel

MATLAB R2016a was employed to predict the MRR and
SR. The experimental data served as the fundamental source
of input–output information for training the neural network.
This dataset was subsequently divided into twomatrices: one
for inputs and another for outputs. Various network con-
figurations were explored, incorporating different training
algorithms, and adjustments were made to identify the opti-
mal architecture. The experimental dataset, consisting of nine
sets of data, was randomly partitioned into three segments
using theMATLABR2016a neural network toolbox, allocat-
ing 70% for training, 15% for testing, and 15% for validation,
respectively [24, 25]. This division involved using seven data
sets for training, one for testing, and one for validation, a
strategy aimed at preventing the network from overfitting
[26]. For this particular dataset, the Multilayer Perceptron
(MLP) network was chosen, employing the Tangential–Sig-
moid function for the hidden layer, a linear transfer function
on the output layer, and the LM Algorithm. Neural network
training uses the Levenberg–Marquardt (LM) algorithm. It’s
a numerical optimization technique that blends elements of
the Gauss–Newton method and gradient descent. when stan-
dard gradient descent techniques might converge slowly, the
LM algorithm is frequently employed [27–29]. This choice
was made due to the algorithm’s speed and its minimal mem-
ory requirements when compared to other algorithms [30].

The optimal conformation for the ANN model was deter-
mined to be a 4–12–2 network structure, indicating input
layer (4 nodes), hidden layer (12 nodes), and output layer
(2 nodes). To evaluate the regression fit and the overall per-
formance of the developed model, we employed two key
parameters, namely R2 (coefficient of determination) and
MSE (mean squared error) [31–37]. The precision of the
ANN model was evaluated across training, validation, and
testing datasets to gauge its effectiveness, employing R2 and
MSEmetrics [33, 38–43]. The resultant values arementioned
in Table 8. The regression work was employed to inspect the
relationship between the inputs/outputs generated by ANN
and their corresponding target values [44–48]. The preferred
ANN architecture, denoted as (4–12–2), is depicted in the
comprehensive regression graph presented in Fig. 8. Notably,
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Fig. 7 SEM images for a ZrSiO4 nano particles b SiC nano particles

Fig. 8 SEM micrographs for MRR A Copper electrode B Graphite electrode

Fig. 9 SEM micrographs for SR A Copper electrode B Graphite electrode
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Table 8 Performance evaluation for 4–12–2 ANN model

Data set R MSE

Train 0.99846 0.05347

Validation 1 0.07102

Test 1 0.05638

the detected correlation coefficients for the training, valida-
tion, and testing sets are 0.99846, 1, and1, respectively.When
considering all datasets encompassing training, validation,
and testing, the correlation coefficient is determined to be
0.98003. The provided information encompasses regression

diagrams for the ANN, covering a range of neurons from 1
to 20. These charts reveal an R2 value of 0.98003, indicating
that the fit accounts for 98.003% of the overall variation in
the average data. Essentially, this demonstrates a high degree
of concordance between the experimental outcomes [49].
Figure 10displays scatter plots comparingpredicted values to
actual values across various data sets, including training, vali-
dation, testing, and the complete dataset. Figure 11 illustrates
an error histogram, quantifying the disparity between pre-
dicted values and targeted values. The histogram is divided
into bins, representing different ranges of error [50–52].

The Y-axis denotes the samples number from the dataset
falling to each bin [53–55]. The bin’s height for the training

Fig. 10 Regression Fit in ANN
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Fig. 11 Error histogram

Fig. 12 Validation performance diagram

set is around 2, and for the validation dataset which close to
this value. This suggests that the majority of samples exhibit
an error of 0.02413.

The zero-error line is positioned slightly to left of the cen-
ter bin and also has an error 0.02413. For predicting theMRR
and SR, the most optimal validation was achieved at epoch
1, as shown in Fig. 12, where the MSE graph displays results
from 7 epochs of all datasets. In general, as the number of
training epochs increases, the error tends to decrease. How-
ever, it’s worth noting that once the network starts overfitting
the training data, the validation dataset error may begin to
rise [56–58]. This result confirmed the model’s capability,
demonstrating that the experimental result closely matched
the prediction made by the ANN with a relative discrepancy
of less than 1. This indicates that the ANN-derived model

effectively captures the connection among the input variables
and the outputs. The findings also underscore a significant
alignment between the neural system’s predictive capabili-
ties and established testing validation standards.

5 Conclusion

• In this current investigation, we have undertaken an effort
to discover the impact of various process parameters
employed in the ECM process when machining Alu-
minium alloy (AA6082 /ZrSiO4 /SiC) to achieve improved
performance metrics related to Material Removal Rate
(MRR) and surface roughness (SR). Based on the out-
comes of our experiments, the following findings have
been derived.

• The investigation revealed that the most advantageous
combination of parameters for achieving the highest MRR
is TF3-AV1-EC2-ET2. Importantly, employing a brass
electrode in the machining of the alloy, with specific
parameters held constant (tool feed rate at 0.4 mm/min,
applied voltage at 25 V, and electrolyte concentration at
40 g/liter), results in a notable increase in MRR.

• Conversely, the graphite electrode composed of carbon
requires lower temperatures for electron emission and
doesn’t require an extended timeframe to establish the
essential energy pathway to improve the MRR.

• The ANOVA findings for MRR distinctly indicate that the
most prominent factor influencing MRR is the electrode
type (47.08%), followed by the tool feed rate and other
parameters.

• It has been established that the ideal parameter combi-
nation for attaining the best SR is TF1-AV1-EC2-ET2,
characterized by a tool feed rate of 0.2mm/min, an applied
voltage of 25 V, an electrolyte concentration of 40 g/liter,
and the utilization of a brass electrode.

• ANOVA results for surface roughness, clearly illustrating
that the most influential factor affecting SR is the tool feed
rate (88.33%), followed by the applied voltage and other
related parameters

• Furthermore, it isworth noting that the brass electrode con-
sistently delivers superior surface finishes with minimal
tool erosion. The surface examination through scanning
electron microscopy (SEM) further confirms this observa-
tion, revealing an enhanced surface finish when utilizing
the brass tool as compared to graphite.

• MATLAB R2016a was utilized to predict the MRR and
SR output responses. The experimental data supplied the
crucial input–output information needed for training the
neural network. The most effective configuration for the
ANN model was identified as a 4–12–2 network structure
with 4 nodes in the input layer, 12 nodes in the hidden
layer, and 2 nodes in the output layer. When examining
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all datasets, which include training, validation, and test-
ing data, the correlation coefficient was calculated to be
0.98003.
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